Main Index Search Register Login Who's Online FAQ Links | ||||
1 Online, 0 Active | You are not logged in |
|
Novel Discourse | |||
All 16 posts | Subject: Methyl tosylate: _finally_ , OTC!!! | Please login to post | Down | |||||
Antoncho (Official Hive Translator) 03-16-03 10:51 No 417550 |
Methyl tosylate: _finally_ , OTC!!! (Rated as: excellent) |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Hey, guys. Looks like our quest for OTC, cheap, effective and non-poisonous methylating agents is coming close to an end. This is methyl benzenesulfonate – substance similar to methyl tosylate, but w/out that extra methyl group on the ring. It is a solid at RT (no carcinogenic vapors to breathe with), has high reactivity similar to DMS’s (will easily methylate aldehydes and such) and, the best of all , it can bee made from OTC and next-to-OTC things in an easy, non-demanding fashion [victor’s smile] The preparation consists of two steps. The 2nd one is well-known: benzenesulfonylchloride is reacted w/MeOH (preparation given for methyl tosylate): 190g finely ground tosyl chloride is combined w/150g MeOH and cooled to 0 C. To this mixture there’s added 115g 40% NaOH in such a way that the temp never rises above 8 C. Stirring is continued for ~10h. The mixtr is poured into ice/water, precipitated product is filtered and washed w/water until complete removal of alkali. Crude ether is melted (28 C), filtered and distilled at reduced pressure. The 1st , and the crucial for this pathway step is synthesising that sulfonyl chloride. Usually it is prepared by reacting the arene of choice w/chlorosulfonic acid, which is a nasty and definitely not easily accessible for a kitchen bee chemical. As it turns out, there’s a much better way. These sulfonylchlorides may bee made by diazotizing an aniline, reacting it w/conc. soln of SO2 (can bee made in situ from bisulfite) in HCl and decomposing the adduct w/a copper salt. Ordinarily this rxn gives high yields only w/electron-poor rings – due to the low thermostability of electron-rich aryldiazonium salts, as they say. But as you will see later on, there are gimmicks which allow one to pull this rxn on electron-rich substrates with decent yields. Beelow there are three procedures, each of them has certain advantages that can and should bee combined together to produce the absolutely easiest and optimal procedure. 1. From Patent US3947512 200 Parts by weight of 1-amino-2-methyl-4-nitrobenzene were diazotized at 0 DEG - 5 DEG C with 400 parts by weight of 30% hydrochloric acid and 235 parts by weight of 40% sodium nitrite solution. The clarified diazo solution was allowed to run, with slight external cooling, below the surface of a mixture of 1300 parts by weight of 30% hydrochloric acid, 33 parts by weight of crystalline copper sulfate and 330 parts by weight of 40% sodium bisulfite lye, while adding at the same time further 330 parts by weight of 40% sodium bisulfite lye. After about 45 minutes, the sulfonic acid chloride that had separated was filtered off with suction, washed with 2000 parts by volume of cold water and dried. The 2-methyl-4-nitrobenzene-sulfonic acid chloride was obtained in a yield of 85% of the theory and was found to melt at 105 DEG - 106 DEG C. Here we have the rxn performed in a homogenous solution (i.e., no need for vigorous stirring) and also it teaches us that the SO2 can bee produced in situ. BTW, one of the products mentioned in the above patent is naphtylsulfochloride, yield – 72% The next one: 2. From “Methods of synthesis of organic reagents”, Dykhanov, Jijelaeva, Ryzhkova, v.26, p. 134-135. Into a 0,5l beaker equipped w/a stirrer, thermometer and a addition funnel the end of which is placed 9-10cm above the beaker’s bottom, there’s placed 16.05g (0.15mole) toluidine (or anisidine) and 12g H2SO4 in 200mls water. The suspension is heated until full dissolution of the pptt, cooled to 0-20 С and diazotized w/10.35g NaNO2 in 35mls water (introduced beelow the surface). After the end of diazotization the xtals must fully dissolve and the soln have pH ~2 and give positive test on HNO2 (iodine-starch paper). Otherwise add 2-5mls acid or NaNO2 soln. Into 1l flask there’s placed 100mls sat. soln of SO2 in GAA (30-33%) , 30mls conc. HCl, 150-200mls benzene and 6,5 CuCl2 and the mixtr is stired until fine emulsion forms. The diazonium soln is added thereto, the mixtr is heated to 30-45 С and helg at that temp until N2 evolution stops (toluidines: temp=30-40 C; times: ortho – 90mins, meta – 10mins, para – 35mins; anisidines – temp=40-45 C; times: ortho – 240mins, meta – 15mins, para - 60mins). The rxn is poured into 3x qtty water, the organic layer is sep’d, washed w/water until washes beecome neutral, dried for 3hrs over 15g CaCl2, benzene stripped, the residue distilled in vacuo. Yields: toluidines: ortho – 65.5%, meta –74.7%, para –80.2%; anisidines – ortho – 39.5%, meta –40.4%, para -37.7%). A couple of comments on the above proc: first of all, the authors use sulfate diazonium salts motivating their choice w/the notion that diazonium sulfates are more temp. stable – which assumingly has positive impact on yields. Then, they say that the actual catalyst in the rxn is CuCl, which is formed from CuCl2 and SO2. So it shouldn’t really matter what kind of Cu we use here. Now comes the juiciest part. In the patent the exerpts from which you’re about to read, authors make electron-rich sulfonyl chlorides from anilines with really good yields. They achieve it by: a) Using a PTC (which, as they say, speeds up decomposition of diazonium/sulfurous adduct, which has a positive impact on the yield) b) What is really cool is that they OXIDIZE the post-reaction mixture. The sulfinic acid, which is the major side-product in this rxn, upon oxidation turns into the same sulfonyl chloride. Although they use chlorine as oxidant in the examples, they say that it may bee hydrogen peroxide as well – weird but true. In any case, it should bee possible to make chlorine in situ by adding CaOCl2. 3. From Patent US4393211 EXAMPLE 1 Preparation of 2-chlorobenzenesulfochloride To 100 g of cooled 36% strength by weight hydrochloric acid (=1 mole of HCl) were added first 32 g (about 0.25 mole) of 2-chloroaniline and then, in the course of 15 min at 0 DEG-5 DEG C., 76 g of a 25% strength by weight sodium nitrite solution (=0.28 mole of NaNO2). Thereafter, the diazonium salt solution obtained was stirred for 10 min at 0 DEG C., following which the excess nitrous acid was destroyed with a small amount of urea. The diazonium salt solution was then brought into contact with a solution of 100 ml of 1,2-dichloroethane and 21 g (0.33 mole) of SO2 at 20 DEG C., using vigorous stirring. Thereafter, a concentrated aqueous solution of 0.625 g (3.7 millimoles) of copper-II chloride dihydrate was added to the mixture, and the batch was heated to 50 DEG C., with stirring, and kept at this temperature until no more nitrogen was liberated; this required 80 min. Thereafter, 2.5 g (35 millimoles) of chlorine gas were passed into the mixture at 50 DEG C. After 5 minutes, the phases were separated and the organic phase was worked up in a conventional manner to give the required product. The yield of pure 2-chlorobenzenesulfochloride (boiling point 144 DEG-146 DEG C./21 mbar) was about 93%. EXAMPLE 2 Preparation of 4-methoxybenzenesulfochloride A diazonium salt solution, prepared similarly to Example 1 from p-anisidine, was brought into intimate contact with a solution of 100 ml of diethyl ketone and 21 g (0.33 mole) of SO2, and was then decomposed using 0.5 g of CuCl2.2H2 O and 1 g of tetrabutylammonium chloride at 40 DEG C. Further treatment with 4.5 g (63 millimoles) of Cl2 and subsequent conventional working up of the reaction mixture gave 4-methoxybenzenesulfochloride in 87% yield; melting point 43 DEG C. To sum up all of the said above, the ideal procedure for the kitchen synth should look like this: 1. Diazotize anilinium sulfate. 2. Make SO2 soln with bisulfite/HCl 3. Mix the solutions, add CuSO4, heat for 10mins at 40 C. 4. Add calculated amt of CaOCl2, heat at 50 С for 10mins 5. Chill, filter, rextallize 6. React w/methanol as described earlier. 7. Voila! So, bees….. Do you like it? Any suggestions? Constructive criticism? Anyone wants to try this? Yours, Antoncho P.S. I rated this post of mine at HyperLab (Post 417284 (Antoncho: "Метил тозилат: наконец-то, ОТС !!!", Russian HyperLab)), but I’ll reset the rating after you rate this one |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
bottleneck (Hive Bee) 03-16-03 11:17 No 417556 |
Hey Antoncho, why not obtain these esters by... | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Hey Antoncho, why not obtain these esters by esterification of the sulfonic acids? Is there some hindrance to this? Edit: Well, after I tried orgsyn which was down, I did a search of the Hive, and I guess you found a reference for this once yourself. That is indeed OTC. By the way, what's that I read in that very same thread about thiocyanation not working?? It sounded so sincere about 2C-SCN! |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
bottleneck (Hive Bee) 03-17-03 14:16 No 418068 |
Well, having looked at some patents, I guess... | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Well, having looked at some patents, I guess esterfication of the pure sulfonic acid is a bit difficult to find, and the chloride is normally used instead. Even if that turned out to be necessary, and not just patent-mangling what is the big need for sulfonates anyway? As mentioned by PolytheneSam and others Patent GB646736 already provides that dimethyl sulfate can be easily replaced with sodium methyl sulfate and monomethyl sulfate, which as far as I know are not so poisonous as DMS. Besides, this reaction appears to take place in aqueous solution, so one presumably doesn't need to isolate sodium methyl sulfate, but can just use a presumed excess. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Antoncho (Official Hive Translator) 03-21-03 09:22 No 419743 |
Time for a lil dreamin'.... (Rated as: good read) |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Here goes. The following solutions were prepared beeforehand: 1. 21,3 g (150mmole) of really old (1979) anilinium sulfate + 12g sulfuric acid in 200mls hot water. When all dissolved, rapidly chilled under running water (xtallization once again). Put in ice-salt bath. 2. 100mls conc. HCl + ~50cm3 ice from freezer. When the temp inside falls to ~zero slowly add 18g NaHSO3. No bubbles will evolve as long as you do it carefully, but keep the soln well covered – it stinks like hell! 3. 18g NaHSO3 in minimal qtty cold water (~40-50mls). Put in fridge. 4. 10.3g NaNO2 in 35mls water in addition funnel, chilled thoroughly under running water. The solution 1 was put under mechanical stirring and thereto was added from the funnel nitrite solution. The mech stirrer SWIM used didn’t cut it: the foam-like aniline salt just floated on top. To SWIM’s greates surprise, no visible dissolution occurred after the addition! So SWIM, figuring that, maybee, he accidentally put a 5g weight on his scales intead of 10g one when weighing the nitrite – SWIM is pretty absent-minded – decided to add more NaNO2 soln. Very soon it turned out that the pH turned neutral so SWIM added more acid, then more nitrite, more acid etc until the solids almost totally dissolved, the rxn by then being dark-brown. No NO2 smell was EVER observed. “OK, now let’s assume that whatever happened there, we still got our diazonium salt” – SWIM thought and proceeded on. The stirrer was now put in 1liter kitchen jar with the HCl/SO2 soln. In there was added a teaspoonfull of CuCl2 – surprisingly, the soln turns green! (SWIM thought Cu++ would get reduced, but the green color went away only later and reappeared in the eventual end of the reaction.). Stirring was started and diazonium solution (which was previously kept in icebath) was poured into the funnel thru a piece of several times folded bandage (improvised filtering) and added into the soln of SO2 and HCl. While the addition was carried out, the solution 3 was added in several portions thru a syringe. STRONG SULFUROUS SMELL!!! When all was added, the soln was quite cold and dirty yellow in color. No observable reaction was taking place at that temp. Now SWIM had a great problem: the literary sources said to heat the soln to 30-40 C. But it was evident that such an operation would generate some awfull smell in SWIM’s apartment. Meanwhile, it was already 11 pm in the evening and SWIM’s wife and parents were preparing themselves for the night’s sleep. So SWIM just untightly covered the jar and put it into the closet overnight. Emission of nitrogen was slow at RT, the mixtr looked like a soda bottle opened some hours bee4, gently fizzing when swirled. In the morning the bottom of the jar was covered with dark drops that were swirled into one bulk and pulled out with a pipette/syringe. Then the soln was heated to 50 C on waterbath which lead to precipitation of yet more liquid, estimated 4-5mls. Bleach pool was then carefully added until sulfurous smell was gone, and some more after that. This proved to bee a BAD IDEA since the qtty of the liquid at the bottom actually DECREASED. Moreover, CaSO4 pptated which made recovery of what was left at the bottom even less effective – maybee 2mls total. SWIM couldn’t bring himself to xtract the solution although obviously it contained more product and who knows how much was dissolved in water. Anyway, the weight of crude, unwashed and undried stuff was 16,5 g (roughly 62%). It is a dark-brown heavy liquid with pronounced lacrimogenic properties. SWIM’ll see if it solidifies in the fridge (mp supposed to bee circa 15 C). Chemexper lists benzenesulfonyl chloride as “Toxic” (y’know, that skull picture), although toluenesulfonyl chloride and methyl benzenesulfonate are listed as only ‘corrosive’ (can anyone tell me what’s so dangerous about PhSO2Cl?). Now, what was learned: 1. Omit the stirring in BOTH the 1st and the 2nd stages of the experiment. During the 1st step NaNO2 should bee added in portions and hand-shaking instead of stirring would bee desirable. During the 2nd step simply combine the solutions – no exoterm will occur and no reaction either, as long as they are both cold. These modification will make the whole procedure much more pleasant and easy, I shall say. 2. Slow decomposition of diazonium adduct is possible, although doing as advised in the patents will probably increase the yield. 3. DO NOT add CaOCl2. What remains unclear: 1. Can anyone suggest WTF happened in the diazotization stage? 2. Can anyone advise SWIM how to quickly and mildly destroy SO2 (so as to make further work-up of postreaction mixtr a more tolerable xperience) 3. What are the dangers of working with benzenesulfonyl chloride? Please answer, fellow bees, I’m very much in need of your input [yeah, I always say that][hope you like it and so on] Antoncho |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Vitus_Verdegast (Hive Bee) 03-21-03 10:42 No 419759 |
WARNING!! VERY TOXIC!! | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Vitus_Verdegast (Hive Bee) 03-21-03 10:47 No 419763 |
SO2 fumes | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
yellium (I'm Yust a Typo) 03-23-03 14:23 No 420427 |
I wuldn't worry about the toxicity of ... | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
I wuldn't worry about the toxicity of benzenesulfonyl chloride. If it's as reactive as chlorosulfonic acid, it's sensitivity to water can be much more dangerous. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
psyloxy (Hive Addict) 09-03-03 21:22 No 457066 |
general rxn schemes for sulfochloride synthesis (Rated as: good read) |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lego (Hive Bee) 09-10-03 16:34 No 458188 |
Some alkylations with alkyl tosylates, Pt. 1 (Rated as: excellent) |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Methyl p-toluenesulfonate is not as harmless as dimethylcarbonate but definitive less toxic than dimethylsulfate or methyl iodide. Depending on the chemical company selling it methyl p-toluenesulfonate is either rated as irritating or 'may cause cancer'. Bees handling it should wear proper protecting clothes and handle this stuff with care. As it can bee prepared OTC it offers an alternative to DMS and MeI but as far as TFSE told there is no working instruction or write-up in the Hive or at Rhodium's page. Here are some practical applications (some are quite old but so nobee has to bee afraid that the authors clean their product via column chromatography ) Methylation of hydroxy aldehydes Arch. Pharm., 1933, 271, 462-466 (http://www.angelfire.lycos.com/scifi2/lego/journals/28.djvu) Translated excerpt [...] The reaction products (alkylated aldehyde and unreacted hydroxy aldehyde) are so pure that further purification (recrystallization or distillation) is only necessary in a few cases. Dihydroxaldehydes can alkylated in this way, too. Yields are not as high because the formation of mono-alkylated and oxidized products. Lacking enough starting material we were not able to develop a general method but there is no doubt that this method can be used with sucess for the alkylation of dihyroxy and polyhydroxyaldehydes. [...] Veratric aldehyde, 3-4-dimethoxybenzaldehyde To 15.2 g vanillin (0.1 mol) a calculated amount of kalihydrat (probably KOH) was added and dissolved in 75 ml MeOH. 18 g methyl tosylate (0.1 mol) and heated on a water bath for 1.5 h to reflux. As soon as the the light yellow, clear solution starts boiling the potassium salt of methyl toluenesulfonic acid starts to precipitate. After 1.5 h everything is poured in about 300 ml of H2O. First there is a white emulsion which starts to separate a light yellow oil. The aqeuous solution and the oil is extracted exhaustive with Et2O, the organic phase is washed twice with 10 ml 5% aqeuous KOH to remove unreacted vanillin. The organic phase turns almost colourless, the alkaline solution is light yellow. The organic phase is washed with H2O, dried with freshly sulphate (probably MgSO4 or Na2SO4) and evaporated. The oily residue solidifies on cooling (melting point: 42-43°C). Recrystallization from Et2O yields a white product. Yield: 13.8 g, 83% of theory. The pooled basic solutions and wash water is acidified with 20% H2SO4 and extracted with Et2O. The organic phases are dried with Na2SO4 and treated as usally. The yield of light yellow coloured vanillin (melting point: 81-82°C) is 2.5 g (increasing the yield to 99%) and it can be used without further purification. Vanillin ethyl ether, 4-ethoxy-3-methoxybenzaldehyde 5 g vanillin were treated with 150 ml EtOH containing 2 g 90% KOH. 6.6 g ethyl toluenesulfonic acid are added and the reaction mixture is refluxed for 1.5 h. The still hot solution is poured in 600 ml H2O and proceeds as describe above. Yield of ethyl vanillin (this must be an error, ethyl vanillin is 3-ethoxy-4-hydroxybenzaldehyde, the probably mean ethylated vanillin): 4.9 g. 0.9 g vanillin are recovered. Total yield: almost 99%. Amyl ether of vanillin, 4-pentoxy-3-methoxybenzaldehyde 5 g vanillin are dissolved in 50 ml EtOH containing 2 g KOH (90%), then treated with 8 g amyl toluenesulfonic acid and refluxed for 2 h. The reaction mixture is poured in the 4-times amout of H2O and a heavy oil precipitates. The mixture is extracted with Et2O, the organic phase is washed two times with 5% alkali solution (any basic solution will work, not specified here), then with H2O and dried with Na2SO4. After evaporation a light yellow oil is obtained. After rectification one gets 5 g of a water-coloured (boiling point 185-186°C (17 mm)). 1 g vanilin was recovered from the wash water and alkaline solutions. Total yield: 86%. o-Methxoybenzaldehyde 12.2 g Salicylaldehyde (0.1 mol) are dissolved in 100 ml ethanolic KOH-solution, the solutions turns slightly green, 18.6 methyl toluenesulfonic acid are added and the solution is refluxed for 1.5 h. The reaction after usual workup yields 10.5 o-methoxybenzaldehyde and 2.7 g salicylaldehyde. Total yield: ~87%. o-Ethxoybenzaldehyde The reaction is carried out as above but with ethyl toluenesulfonic acid. From 12.2 g salicylaldehyde 2.5 g are recovered. 11.5 g of ethoxy compound are obtained. Total yield: ~96%. 4-Methoxybenzaldehyde 6.1 g p-Hydroxybenzaldehyde are dissolved in 50 ml of n-ethanolic potash lye, treated with 9.3 g methyl toluenesulfonic acid and heated to reflux on the water bath. After usual workup one gets 4.1 anisaldehyde. 2 g p-hydroxybenzaldehyde are recovered. Total yield: 90%. Veratric aldehyde from protocatechualdehyde, 3,4-dimethoxybenzaldehyde from 3,4-dihydroxybenzaldehyde 5 g protocatechualdehyde are dissolved in 72 ml n-ethanolic potash lye, turning the solution instantly greenish-brown. 13.6 g methyl toluenesulfonic acid are added and the mixture is refluxed for 1.5 h on the water bath. After usual workup one gets 3.5 g veratric aldehyde (melting point: 42-43°C). Yield: ~60%. The ethanolic washing solutions after acidifying and extraction with Et2O yielded 2 g of dark crystalline product which is a mixture of the starting material and the monomethyl ester (probably the monomethylated product is meant). Due to the lack of starting material and the difficulty of separating such mixtures we were not able to dertemine the quantitative relation. The candle that burns twice as bright burns half as long |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lego (Hive Bee) 09-10-03 16:43 No 458190 |
Some alkylations with alkyl tosylates, Pt. 2 (Rated as: excellent) |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
About the alkylation of phenols with p-toluensulfonic acid esters Monatshefte fuer Chemie, 1951, 82, 588-593 (http://www.angelfire.lycos.com/scifi2/lego/journals/29.djvu) Translated excerpt [...] We found that the best way to alkylate phenols is the reaction in aqeuous NaOH. The ester are more reactive than the halides: Higher alkyl-groups could be inserted fast and without difficulties. If higher alkyls (more than 12 C-atoms) were used a small amount of the corresponding alcohol was formed by saponification of the ester. The alcohol could easily be removed (e.g. recrystallization). The alkylation with primary aliphatic mono- or polyalcohols made no problems, secondary alcohols gave lower yields. In case of cycloaliphatic alcohols the yield decreased to 20%. In both of these cases the smell of olefin was present. [...] The allylation led to polymerisation if the temperature was too high. p-Toluenesulfonicacid benzylester was very reactive and showed drastic side reactions, therefore we got in aqeous media only few benzylphenylether. In this single case the reaction of an absolute ethanolic soultion with sodium phenolat was advantagous. [...] Ortho oder para substituents increasing the acidity of phenols made the alkylation more difficult. In ortho position to the phenolic hydroxyl group even a methyl-group obstructs. Table 1. Methylation and ethylation of phenolic hydroxy groups.
Table 2. Alkylation of phenolic hydroxyl groups with p-toluene sulfonic acid esters of higher, poly- and substituted alcohols.
Table 3. Influence of substituents on methylation of phenolic hydroxy-groups
Table 4. Aklyation with p-toluenesulfonicacid esters without isolating the ester
Experimetal Phenetol. 19 g (0,2 mol) phenol were dissolved in 65 ml 3N NaOH (0.2 mol NaOH), treated wtih 40 g ethyl-p-tosylate, stirred and heated to reflux for 1 h. 10 ml 6 N NaOH were added and heating was continued for further 0.5 h. After cooling the upper organic layer was taken up in Et[2]O, the etheral solution washed with dilute NaOH and H2O and dried. After evaporation the product was distilled in vacuo. Yield: 19.2 g phenylethylether (78.7%) [...] Allylphenylether. 0.2 mol allyl-tosylate, 0.2 mol phenol and 6 N NaOH were stirred, the reaction temperature increased to 45-60°C without external heating. After completion of the reaction the reaction was cooled, extracted with Et2O and worked-up as usual. Yield: 15.7 allylphenylether, 58.6% [...] Benzylphenylether. 4.8 g Na (0.2 mol) were dissolved in 100 ml EtOH and treated with 19 g freshly distilled anhydrous phenol (0.2 mol). To this alcoholic phenolate solution 52.4 benzyl-toylsate (0.2 mol) were added and this mixture was stirred for 2 h at 60-70°C. After addition of H2O benzylphenylether precipitated, it was filtered, washed and dried. Yield: 36.4 (98.8%) Before adding H2O most of the EtOH could be evaporated. Nerolin Neu. To 47.5 g p-toluenesulfonyl chloride (0.25 mol) and 20 g EtOH (0.45 mol) 40 ml 25%NaOH were added at 15°C and stirred at this temperature for 3 h. 29 g [beta]-naphthole (0.2 mol), 8 g NaOH (0.2 mol) and 10 ml H2O were added to get a ~4 N NaOH solution. This mixture was heated on a boiling water bath, then 10 ml 6 N NaOH were added and heated for further 30 min. After cooling the formed crystals are filtrated, washed with dilute NaOH and H2O and dried. Yield: 33.0 g [beta]-naphthylethylether, melting point 36°. Yield: 96% (based on used [beta]-naphthol), 77% (based on p-toluensulfonyl chloride) The other experiments of Table 4 were carried out as described. n-Butylphenyl ether. 18.5 n-butanol (0.25 mol) and 40 g pyridine (0.5 mol) were stirred at -5°C, treated with 47.5 g p-toluenesulfonyl chloride (0.25 mol) and stirred for 4 h at -5°C to -2°C. 19 g Phenol (0.2 mol), 32 ccm 6 N NaOH (0.2 mol) and 10 g NaOH (0.25 mol) and heated and stirred on a boiling waterbath. After adding further 10 ml NaOH and heating for a short time the reaction mixture is cooled, treated with H2O and HCl and extracted with Et2O. The organic phase is washed with HCl, NaOH and H2O and dried. After usual workup 17.3 g n-butylphenyl ehter with a boiling point of 88°C/9.5 mm Hg and n20D: 1.4978 are obtained. Yield: 57.7% (based on phenol), 46.2% (based on p-toluenesulfonyl chloride and butanol) Conclusion [...] The preparation of ethers does not require the isolation of the sulfonicacid ester. The candle that burns twice as bright burns half as long |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lego (Hive Bee) 09-10-03 16:50 No 458191 |
Some alkylations with alkyl tosylates, Pt. 3 (Rated as: excellent) |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Monatshefte fuer Chemie, 1951, 82, 594-599.djvu (http://www.angelfire.lycos.com/scifi2/lego/journals/30.djvu) About the alkylation of alcohols, thioalcohols and thiophenols with p-toluenesulfonicacid esters. [...] Table 1. Preparation of dialkylethers with p-toluenesulfonicacid esters and sodium alcoholates in benzene
Table 2. Alkylation of thioalcohols and thiophenols with p-toluenesulfonicacid esters
9 By-product: 13.3% Di-n-dodecylsulfid n-Dodecyl-p-tolylsulfide. 13 p-thiocresol, 16 ml 6 N NaOH (0.1 mol) and 34 g n-dodecyl-tosylate (0.1 mol) were stirred on an oilbath at ~150°C for 45 min and refluxed. After cooling H2O was added and the formed white product was recrystallized. Yield: 24.3 g (83.2%). [...] n-Butyl-iso-propylsulfide 15.2 iso-Propylthioalcohol (0.2 mol) were dissolved in 32 ml 6N NaOH, treated with 46 g n-butyl-tosylate (0.2 mol) and heated on the waterbath for 4 h at 60-80°C. After usual workup and vaccum distillation 24.4 g n-butyl-iso-propylsulfid was obtained (92.5%). [...] The other sulfides were prepared as described (see Table 2.) Now the deluxe version: J. Org. Chem., 1990, 55, 5639-5646.pdf Selective functionalization of calix[4]arenes at the upper rim No DOI found Nomenclature overkill (short version: 2 phenolic hydroxy groups are methylated) A suspension of calix[4]arene (2) (30.0 g, 70.7 mmol), potassium carbonate (anhydrous, 10.7 g, 77.4 mmol), and methyl tosylate (26.3 g, 141.4 mmol) was refluxed in CH3CN (500 mL) for 24 h. After evaporation of the solvent, the mixture was taken up in CH2Cl2 (500 mL) and washed with 1 N HCl (2 x 50 mL) and brine (50 mL). The organic layer was dried with MgS04, and the solvent was evaporated to afford 5 as a pure white solid yield 30.8 g (97%); mp >300 "C. Lego's voice: Although the authors are sometimes a bit vague and has some problems with nomenclature this method is suited for clandestine purposes. No special equipment is needed, only standard chemicals are used, the reaction is carried out on a multigram scale and the product is sufficient pure. Proposal for alkylation of hydroxyaldehydes: Dissolve the hydroxaldehyde in EtOH (~750 ml/1 mol) containing an equal molar amount of KOH (56.10 g/mol) or NaOH (40.00 g/mol). Add an equal molar amount of methyl tosylate (186.23 g/mol). Reflux for 1.5-2 h. Pour in H2O (~4 times). Extract several times with Et2O (other nonpolar solvent will work, too). Wash the organic phase two times with alkaline solution (e.g. 5% KOH in H2O). Wash the organic phase with H2O. Dry with Na2SO4 or MgSO4. Evaporation of the solvent yields the alkylated product. If the product is unpure distillation or recrystallization can bee used to purify the product. For alkylation of polyhydroxybenzaldehydes (e.g. 2,5-dihydroxybenzaldehyde or 3,4,5-trihydroxybenzaldehyde) one have to use the double resp. triple amount of methyl tosylate and KOH/NaOH. For 2,5-dihydroxybenzaldehyde an inert gas atmosphere (N2 or Ar) to prevent oxidation will increase the yield. For alkylation with higher alkyls one have to change the molar weight of the alkylating agent (e.g. 200.256 g/mol for ethyl tosylate, 212.266 g/mol for allyl tosylate). Please note: The german articles were sometimes unprecise, old nomenclature, measuring units and terminology were used. As this is a translation one has to doublecheck the article and the translation before using these procedures. It is the own responsibility of every bee and chemist. The candle that burns twice as bright burns half as long |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
yinga (Hive Bee) 09-23-03 18:52 No 460592 |
aminophenols? | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
What would happen if this reaction (Antoncho's diazotization and etc.) was tried on an aminophenol? I guess as the sulfonic acid chloride is developed it will tosylate the hydroxyl forming a useless polymer. Unfortunately the only OTC aniline I know of is also a phenol. Any ideas or other OTC anilines? |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
psyloxy (Hive Addict) 09-25-03 03:06 No 460878 |
OTC anilines | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Selective toluene para nitration[1]: Yield 81%
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Rhodium (Chief Bee) 09-25-03 12:32 No 460972 |
Para-Nitration with Bentonite Clay/Dilute HNO3 (Rated as: good read) |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Natural Bentonite Clay/Dilute HNO3 (40%) A Mild, Efficient, and Reusable Catalyst/Reagent System for Selective Mono Nitration and Benzylic Oxidations Bahulayan, Damodaran; Narayan, Gopinathan; Sreekumar, Vellalath; Lalithambika, Malathy Synth.Commun. 32(23), 3565-3574 (2002) (https://www.rhodium.ws/pdf/para-nitration.bentonite-hno3.pdf) Abstract Selective mono nitration of Aromatic hydrocarbons and benzylic oxidations can be achieved in high yield using reusable catalyst/reagent system consisting of bentonite clay and dilute HNO3 under relatively mild experimental conditions. The dual behavior of the catalyst reagent system is utilized for the regioselective synthesis of a variety of industrially important compounds. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
psyloxy (Hive Addict) 09-28-03 15:05 No 461471 |
additional info | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
OTC anilines 1) para-aminobenzoic acid (PABA), ~$6 per 60g from vitamin shops, much cheaper from any chem supplier decarboxylation at 180°C, methylamine.carbonate as byproduct[1,2,3] 2) acetanilide (N-acetylaniline) - innocent material?, ~50$/Kg from chem supplier - hydrolysis gives aniline[4]. tosyl iodide sodium tosylate and I2 will give tosyliodide in 100% yield[5]. Yeah, I know I2 is watched in th US and pricey. But it could be an alternative for a rich and lazy european. [1] Weith; CHBEAM; Chem.Ber.; 12; 1879; 103. [2] Meisenheimer; v. Budkewicz; Kananow; JLACBF; Justus Liebigs Ann. Chem.; 423; 1921; 90, 91. [3] McMaster; Shriner; JACSAT; J.Amer.Chem.Soc.; 45; 1923; 752. [4] Aman, Ahmed M.; Brown, R. S.; JACSAT; J.Amer.Chem.Soc.; EN; 121; 19; 1999; 4598 - 4607. [5] Oae, Shigeru; Togo, Hideo; BCSJA8; Bull.Chem.Soc.Jpn.; EN; 56; 12; 1983; 3813-3817. --psyloxy |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
psyloxy (Hive Addict) 09-30-03 14:23 No 461888 |
parts of Tetrahedron; 59; 8; 2003; 1317 - 1326 (Rated as: excellent) |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The most recent covering of that topic in the literature: Conversion of anilines to sulfonyl chlorides via their diazonium salts is a known but little used reaction. The diazonium salt is allowed to react with sulfur dioxide and HCl in the presence of copper(I) or (II) salts to afford the sulfonyl chloride directly. This process was attractive because it offered one-pot access to our desired sulfonyl chloride 3 with complete regiochemical control starting from the readily available 15 (Scheme 7). Scheme 7: Thus, treatment of the hydrobromide salt of aniline 15 with sodium nitrite in a mixture of glacial acetic acid and aqueous hydrochloric acid afforded the corresponding diazonium salt. Treatment of the resulting slurry with sulfur dioxide and copper salts afforded a mixture of sulfonyl halides 3 and 20, which crystallized directly from the reaction mixture. Some undesired aryl chloride 21 and bromide 14 (via a Sandmeyer reaction) as well as sulfonic acid 18 were also generated, but these were all removed in the crystallization.
Substrate Product Yield In an effort to demonstrate the scope of our newly developed diazotization/chlorosulfonylation procedure we examined five other anilines (Table 3). In each case, corresponding sulfonyl chloride was isolated in high yield and purity (>98%) after filtration of the crude reaction mixtures. Impurities were rejected to the acetonitrile-rich mother liquors and recrystallization of the products was not necessary. The procedure is most likely safe in these cases too since all diazonium salts were completely solubilized. In the case of aniline 28 some diazonium salt was out of solution. It is projected that some additional development on a case-by-case basis can circumvent this potential problem. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||