Main Index Search Register Login Who's Online FAQ Links | ||||
1 Online, 0 Active | You are not logged in |
|
Methods Discourse | |||
All 13 posts | Subject: Oxidations and brominations w/ H2O2/Br2/HBr | Please login to post | Down | |||||
moo (Hive Bee) 11-01-03 09:05 No 468077 |
Oxidations and brominations w/ H2O2/Br2/HBr (Rated as: excellent) |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
I ran into a nice article. Too bad they didn't try to oxidise/brominate any toluenes with only electron donating substituents even though it is quite obvious that ring bromination is going to happen. Maybe this "side reaction" could be exploited to get 4-bromo-2,5-dimethoxybenzyl bromide or 4-bromo-2,5-dimethoxybenzaldehyde straight from 2,5-dimethoxytoluene. Also, it's interesting that cumene yields alpha-methylstyrene and alpha-methyl-beta-bromostyrene. It might be naive to think that the latter product could be hydrolysed to 2-phenylpropanal with an alkali metal hydroxide knowing how stable aldehydes are. In that case one has to settle for only one P2P precursor (https://www.rhodium.ws/chemistry/2-phenylpropanal.html). Maybe the reaction could be tweaked to produce P2P and 2-phenylpropanal from cumene in one pot, who knows? In the end the yields are sure going to suck. Catalytic Processes of Oxidation by Hydrogen Peroxide in the Presence of Br2 or HBr. Mechanism and Synthetic Applications Amati, Alessandro; Dosualdo, Gabriele; Zhao, Lihua; Bravo, Anna; Fontana, Francesca; Minisci, Francesco; Bjorsvik, Hans-Rene Organic Process Research & Development 2(4), 261-269 (1998) (https://www.rhodium.ws/pdf/br-cat.h2o2-oxidation.pdf) DOI:10.1021/op980028j Abstract The mechanism and the synthetic applications for the oxidation of alcohols ethers, and aldehydes by H2O2 catalyzed by Br2 or Br- in a liquid two-phase system (aqueous and organic) are reported. Aliphatic and benzylic primary alcohols and ethers show an opposite behavior, which has been rationalized on the ground of the different electronic configurations of the intermediate alkyl (p-type) and acyl (s-type) radicals and their influence on enthalpic and polar effects. A two-phase system is particularly useful also for an efficient benzylic bromination by Br2 or Br-; the substitution of the benzyl bromide by OH, OR, and OCOR regenerates Br-, which can be recycled. The evaluation of the relative reactivities of the involved substrates and intermediates has allowed to develop a variety of simple, facile, convenient, and selective syntheses of alcohols, aldehydes, ketones, esters, and benzyl bromides, which fulfill the conditions for practical applications. General Oxidation Procedures. Oxidation of Primary Aliphatic Alcohols to Esters. (I suppose this is procedure A) Five millimoles of the alcohol, dissolved in 7.5 mL of CH2Cl2, was stirred for 2 h at room temperature with 3 mmol of Br2 and 7.5 mL of water; 6 mmol of H2O2 (30% aqueous solution) was added within 2 h. The organic phase was separated, washed with aqueous NaHCO3 solution, and analyzed by GC (ethyl heptanoate as internal standard). The reaction products were identified by GC-MS analysis and by comparison with authentic samples. The results are reported in Table 1. The aqueous solution, containing HBr, has been utilized for a further oxidation of 5 mmol of alcohol in 7.5 mL of CH2Cl2 by the addition of 7.5 mmol of H2O2 over 4 h: the results are quite similar. Oxidation of Secondary Alcohols to Ketones Procedure A was utilized by employing half of the oxidant. The results are reported in Table 2. Oxidation of Aliphatic Aldehydes in the Presence of Alcohols Five millimoles of the aldehyde, 15 mmol of the alcohol, and 2.5 mmol of Br2 dissolved in a mixture of 7.5 mL of CH2Cl2 and 7.5 mL of water were refluxed for 1 h; 2.5 mmol of H2O2 was added, and the mixture was refluxed for an additional hour. The organic phase was separated and analyzed by GC and GC-MS; authentic samples were utilized for the identification and analysis of the reaction products. The results are reported in Table 3. Oxidation of Benzyl Alcohols to Aldehydes Two millimoles of the alcohol, dissolved in 10 mL of ACOEt and mL of water, together with Br2 and H2O2 in the ratios reported in Table 6, was refluxed for 4 h. The organic phase was separated, washed with aqueous NaHCO3 solution, and analyzed by GC (p-chlorobenzaldehyde as internal standard; with p-chlorobenzyl alcohol, o-chlorobenzaldehyde was utilized as internal standard). The reaction products were identified by GC-MS analysis and by comparison with authentic samples. The results are reported in Table 6. Oxidation of Benzyl Alcohols to Methyl Benzoate (Procedure E) Five millimoles of benzyl alcohol, 20 mmol of CH3OH, and mmol of Br2 in 10 mL of CH2Cl2 and 10 mL of water were refluxed for 2 h; 6 mmol of H2O2 were then added under reflux over a 2 h period. The organic phase was separated and analyzed by GC (ethyl benzoate as internal standard) by using authentic samples and GC-MS analysis for the identification of the reaction products. The results are reported in Table 7. Oxidation of Benzyl Alcohols to Alkyl Benzoates (Procedure F) Procedure E has been utilized with benzyl alcohols and tertiary aliphatic alcohols. With primary aliphatic alcohols, the procedure has been modified as follows: 5 mmol of benzyl alcohol, 1 mmol of aliphatic alcohol, and 5 mmol of Br2 in 10 mL of CH2Cl2 and 10 mL of water were refluxed. Over 4 h, 6 mmol of H2O2 and 4 mmol of aliphatic alcohol were added. The organic phase was separated and analyzed by GC and GC-MS. The results are reported in Table 8. Oxidation of Aromatic Aldehydes to Alkyl Benzoates Procedures E and F were utilized by using half of the oxidant. The results are reported in Table 9. Oxidation of Ethers Alkylbenzyl Ethers. Two millimoles of methyl benzyl ether in 7.5 mL of CH2Cl2 were stirred for 24 h at room temperature with 0.2 mmol of Br2 and 4 mmol of H2O2 (30% aqueous solution). The mixture was analyzed during the reaction course after 0.5, 1.3, 2, 3, 5.5, and 26.5 h, and the results are reported in Table 10. Di-n-alkyl Ethers. Two millimoles of di-n-alkyl ether, 0.2 mmol of Br2, and 4 mmol of H2O2 (30% aqueous solution) were stirred for 4 h at room temperature in 7.5 mL of CH2Cl2. The organic phase was separated and analyzed. The results are reported in Table 12. Oxidation of Tetrahydrofuran (THF) to gamma-Butyrolactone Ten millimoles of THF and 4 mmol of Br2 were refluxed for 1 h in a mixture of 5 mL of CH2Cl2 and 5 mL of water. Four millimoles of H2O2 was added, and the mixture was refluxed for 1 h; an additional 4 mmol of H2O2 was added, and the mixture was refluxed for 2 h. The mixture was analyzed after 1, 2, and 4 h, and the results are reported in Table 13. The same procedure was utilized with other ethers, and the results are summarized in Table 13. Bromination of Alkylbenzenes Five millimoles of alkylbenzene, dissolved in 15 mL of a CH2Cl2/H2O mixture containing the other reagents in the ratios reported in Tables 14 and 15, were refluxed for 4 h. The CH2Cl2 solution was separated from the aqueous phase and directly analyzed by GC and GC-MS, by using p-chlorobenzyl bromide as internal standard (with p-chlorotoluene the internal standard was o-chlorobenzyl bromide) and authentic samples of the benzyl bromides for the characterization. With substrates deactivated by the presence of -NO2, -CN, and -COOR groups, H2O2 was slowly added to the reacting mixture. In competitive bromination of equimolar amounts of o-nitrotoluene and toluene, only the latter is substantially brominated. With cumene, only 5% of cumyl bromide was formed; the main reaction products were alpha-methylstyrene (72%) and a 1:1 mixture of cis- and trans-alpha-methyl-beta-bromostyrenes (21%). The products were characterized by comparison (GC-MS) with authentic samples. Table 1. Oxidation of primary aliphatic alcohols to esters by H2O2, catalyzed by HBr
Table 2. Oxidation of secondary alcohols to ketones by H2O2, catalyzed by Br2
Table 3. Oxidation of aliphatic aldehydes to esters in the presence of primary and tertiary alcohols
Table 6. Synthesis of aldehydes X-C6H4-CHO from X-C6H4-CH2OH by bromine-catalyzed H2O2 oxidation
Table 7. Oxidation of benzyl alcohols X-C6H4-CH2OH to the corresponding methyl benzoates
Table 8. Oxidation of benzyl alcohols X-C6H4-CH2OH to alkyl benzoates X-C6H4-COOR
a Conversion of benzyl alcohol. b Yields based on the converted benzyl alcohol. fear fear hate hate |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
moo (Hive Bee) 11-01-03 09:13 No 468078 |
Oxidations and brominations w/ H2O2/Br2/HBr (Rated as: good read) |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Table 9. Oxidation of aromatic aldehydes, X-C6H4-CHO, to alkyl benzoates X-C6H4-COOR
Table 10. Oxidation of benzyl methyl ether to benzaldehyde (I), methyl benzoate (II), and mixed anhydride between benzoic and formic acids (III)
Table 11. Oxidation of secondary benzyl ethers, X-C6H4-CH(R)-OMe, to the corresponding ketones, X-C6H4-CO-R
Table 12. Oxidation of dialkyl ethers, R-CH2-O-CH2-R, to the corresponding esters, R-COOCH2R (IV)
Table 13. Oxidation of THF and other ethers
Table 14. Bromination of 2-nitrotoluene (Ar-CH3)
Table 15. Bromination of alkylbenzenes substrate
fear fear hate hate |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
moo (Hive Bee) 11-01-03 09:22 No 468080 |
Another one (Rated as: excellent) |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
High atomic yield bromine-less benzylic bromination Mestres, Ramon; Palenzuela, Jesus Green Chemistry 4(4), 314-316 (2002) Abstract A two-phase mixture (sodium bromide, aqueous hydrogen peroxide/carbon tetrachloride or chloroform) under visible light provides a simple and convenient system for benzylic bromination of toluenes. A high atomic yield for bromine atoms is attained. Substitution of the chlorinated solvents by other more environmentally benign organic solvents has been attempted and good results are obtained for methyl pivalate. fear fear hate hate |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Rhodium (Chief Bee) 11-01-03 15:33 No 468126 |
THF to GBL in 75% yield in 4h using H2O2/Br2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
This caught my eye: Oxidation of Tetrahydrofuran (THF) to gamma-Butyrolactone Ten millimoles of THF and 4 mmol of Br2 were refluxed for 1 h in a mixture of 5 mL of CH2Cl2 and 5 mL of water. Four millimoles of H2O2 was added, and the mixture was refluxed for 1 h; an additional 4 mmol of H2O2 was added, and the mixture was refluxed for 2 h. After four hours they achieve 92% conversion and 81% yield, meaning that THF can be converted to GBL in 75% overall yield using hydrogen peroxide with catalytic bromine (which can be made in situ from any bromide salt)... Who is going to be the first to scale this up to a usable environmentally friendly OTC GBL production procedure? |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
WeakEndChemist (Stranger) 11-20-03 05:30 No 471887 |
Understanding this interaction | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Trying desperately not to be referred to a n00b who should have use tfse, I have searched a bit in reference to what exactly is catalytic bromine. Obviously it's formed from a bromine salt, and I've found that NaBr is fairly easy to purchase. Being that it's called Br2 i'm assuming it's elemental bromide... however, i always figured that it's damned hard to break a salt into elemental parts because of the strong ionic bond in them. So figuring this out on my own has been a horrific failure. I won't lie and say i know enough about chemistry, so please pity the fool. Thanks Sure, I'll try some... Is it dangerous? |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
moo (Hive Bee) 11-20-03 05:51 No 471889 |
Understanding this reaction | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Trying desperately not to be referred to a n00b who should have use tfse It would be much better to study chemistry as there are a lot of free resources, try it. Being that it's called Br2 i'm assuming it's elemental bromide... however, i always figured that it's damned hard to break a salt into elemental parts because of the strong ionic bond in them. It is elemental bromine, not bromide. The hydrogen peroxide is used to oxidise the bromide ions to elemental bromine, which then goes on and oxidises whatever it is used to oxidise thusly being reduced back to bromide ions, which are then available for reacting again in the same manner. That is why it is called catalytic bromine, it isn't used up in the reaction but hydrogen peroxide is. If you want to understand these reactions you must at least read the article, I didn't include the PDF for nothing. If you do not understand what they say... well, then I guess you'll just have to study chemistry as there is no other way to be able to understand chemistry. It is much fun in the end. fear fear hate hate |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Chromic (Synaptic Self-Mutilator) 11-20-03 06:00 No 471892 |
Not me | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
My problem was that the THF that one can get from pipe cement contains acetone. If you try and form Br2 and react it with "mostly pure" THF, you will get bromoacetone. The bromoacetone formed left me crying. It's highly irritating shit to deal with, even in small qty's. Post 363729 (Chromic: "bromoacetone", Chemistry Discourse) I'd absolutely love to see someone work on this who has access to reagent grade thf... (well, I do, but I have to go thru a chem supplier--and THF isn't really watched, so, perhaps I'm just complaining) |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Rhodium (Chief Bee) 11-20-03 07:29 No 471906 |
removing acetone from THF | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Can't you remove the acetone from the THF by washing with bisulfite, or if everything else fails, reduce the acetone to IPA and then distill the THF/IPA mixture from KOH or Mg/I2 (which should trap the IPA as its alkoxide)? |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Chromic (Synaptic Self-Mutilator) 11-21-03 09:23 No 472204 |
Washed with bisulfite | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Yeah, I did wash with bisulfite. That didn't remove all of it... perhaps other suggestions you mentioned would have worked. Ideally I should get some pure THF to do this sort of experimentation with. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Chromic (Synaptic Self-Mutilator) 11-27-03 19:09 No 473493 |
Some more questions | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Moo, in the Deno paper that you dug up, J. Am. Chem. Soc.; 1967; 89(14); 3550-3554, mentioned in Post 308130 (moo: "THF oxidations", Novel Discourse) I noticed that they use 4x equivilants of Br2 and conduct this experiment cold and in the dark. If I've got this right, the paper mentioned in this post uses 1.2 eq Br2 (.4eq added as Br2 and .8eq generated catalytically as in H2O2 + 2 Br- + 2 H+ -> Br2 + 2 H2O) and conducts it at reflux with no mention of protecting from light. This is just strange. 1.2eq versus 4eq? They also change the solvent system from just water (as in the Deno paper) to a mix of DCM and water. Can anyone think of any reasons for changing the conditions so much?!? Of course, there's also the great Tetrahedron; 2000 56; 1905-1910 ref as well that uses bromate... they talk about over-oxidizing the THF and forming small amounts of succinic acid... although they do isolate most of the product, 75% yield, thru atmospheric distillation. Also, can you guys see anywhere if the 75% yield in this paper is an isolatable yield, or is it a GCMS yield? (like the GABA->GHB/GBL is a 100% yield by GCMS--but of that only 75% can be isolated) They just say that "the mixture was analyzed"--which doesn't say much. P.S. why is there three bromine/THF refs and one H2O2/THF refs on the hive and no one but me as reported results on them? Am I just unaware of other people working on these routes? |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
moo (Hive Bee) 11-28-03 02:34 No 473540 |
THF / GBL / Br2 / H2O2 (Rated as: excellent) |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Moo, in the Deno paper that you dug up, J. Am. Chem. Soc.; 1967; 89(14); 3550-3554, mentioned in moo: "THF oxidations" (Novel Discourse) I noticed that they use 4x equivilants of Br2 and conduct this experiment cold and in the dark. In that ref they tried the ratios of THF:Br2 1:5, 4:1 and about 5:1. The focus of the article was on studying the kinetics and mechanism of this reaction, so I guess they weren't so interested in seeing if the reaction works with stoichiometric ratios of the reactants. In that post I say that they did the reaction in dark to avoid free-radical bromination -- this is a claim I must take back not only because of the article posted in this thread, but because of the following quote from the Deno article:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Chromic (Synaptic Self-Mutilator) 11-29-03 09:56 No 473746 |
Uhm | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Also, can you guys see anywhere if the 75% yield in this paper is an isolatable yield, or is it a GCMS yield? Moo, I meant for the paper in this thread. Not for the bromate ref on Rhodium. I'm pretty sure I'll attempt this chemistry if I have enough time. I'd be aiming towards more like 100ml THF, small amount NaBr (10g?), small amount of acid, (perhaps a small amount of DCM, ie 100ml) then slowly adding like ~150g 35% H2O2 (ie about 1.2eq and keeping at reflux if done in DCM). The volumes in that case would be much more reasonable. Thoughts? The theory would be around 100ml of GBL, hopefully one could recover half that. Those volumes would be quite competitive with GBL produced via GABA diazotiation. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
moo (Hive Bee) 11-30-03 09:21 No 473862 |
Oh, of course! :-D I think it is a GC/MS ... | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Oh, of course! I think it is a GC/MS yield, as it seems the yields for the other reactions are always analyzed that way and never isolated. fear fear hate hate |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||